This is simply an alphabetical list of all taxa for which trait information is available in the database. The bar on the right side indicates the information coverage for each taxon and trait. When hovering over the bar with the mouse cursor, a tooltip with the trait name is shown. Blue colour indicates that information is present for this trait.
Syllis vittata Grube, 1840 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Syllis westheidei San Martín, 1984 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Syllis zonata Haswell, 1833 (subjective synonym of Syllis prolifera according to San Martín, G. (2003) ) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Synmerosyllis San Martín, López and Aguado, 2009 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Synmerosyllis lamelligera (Saint-Joseph, 1886) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Tauberia gracilis (objective synonym of Levinsenia gracilis) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Terebella debilis Malmgren, 1866 (subjective synonym of Eupolymnia nebulosa according to Holthe, T. (1986) ) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Terebella ehrenbergi Gravier, 1906 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Terebella lapidaria Linnaeus, 1767 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Terebella tentaculata Montagu, 1808 (objective synonym of Cirriformia tentaculata) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Terebella tuberulata Dalyell, 1853 (subjective synonym of Eupolymnia nebulosa according to Holthe, T. (1986) ) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Terebellidae | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Terebellides stroemii Sars, 1835 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Thalassema scutata Ranzani, 1817 (objective synonym of Sternaspis scutata) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Tharyx | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Tharyx heterochaeta (Laubier, 1861) (Laubier, 1861) (objective synonym of Monticellina heterochaeta) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Tharyx killariensis (Southern, 1914) (objective synonym of Caulleriella killariensis) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Tharyx marioni (Saint-Joseph, 1894) (objective synonym of Aphelochaeta marioni) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Tharyx retierei Lechapt, 1994 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Tharyx vivipara Christie, 1984 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Theodisca anserina Claparède, 1864 (subjective synonym of Naineris laevigata according to http://www.marinespecies.org ) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Theodisca liriostoma Claparède, 1869 (subjective synonym of Naineris laevigata according to http://www.marinespecies.org ) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Timarete Kinberg, 1866 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Timarete filigera (Delle Chiaje, 1828) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Tomopteridae Johnston, 1865 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Torrea pelagica Chamberlin, 1919 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Travisia Johnston, 1840 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Travisia forbesii Johnston, 1840 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Trichobranchidae Malmgren, 1866 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Trochochaetidae Pettibone, 1963 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |