This is simply an alphabetical list of all taxa for which trait information is available in the database. The bar on the right side indicates the information coverage for each taxon and trait. When hovering over the bar with the mouse cursor, a tooltip with the trait name is shown. Blue colour indicates that information is present for this trait.
Scoletoma impatiens (Claparède, 1868) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Scoletoma tetraura (Schmarda, 1861) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Scoloplos | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Scoloplos armiger (O. F. Müller, 1776) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Scoloplos canadensis McIntosh, 1901 (subjective synonym of Scoloplos armiger according to http://www.marinespecies.org ) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Scoloplos elongatus Quatrefages, 1866 (subjective synonym of Scoloplos armiger according to http://www.marinespecies.org ) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Scoloplos jeffreysi iMcIntosh, 1905 (subjective synonym of Scoloplos armiger according to http://www.marinespecies.org ) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Semivermilia ten Hove, 1975 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Semivermilia agglutinata (Marenzeller, 1893) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Semivermilia torulosa (Delle Chiaje, 1822) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Serpula Linnaeus, 1758 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Serpula angulata Costa, 1778 (subjective synonym of Hydroides norvegica according to http://www.marinespecies.org ) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Serpula concharum Langerhans, 1880 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Serpula contortuplicata Linnaeus, 1758 (subjective synonym of Hydroides norvegica according to http://www.marinespecies.org ) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Serpula lobiancoi Rioja, 1917 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Serpula muelleri Berkeley, 1834 (subjective synonym of Hydroides norvegica according to http://www.marinespecies.org ) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Serpula reversa Montagu, 1803 (subjective synonym of Hydroides norvegica according to http://www.marinespecies.org ) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Serpula solitaria Bean in Mörch, 1863 (subjective synonym of Hydroides norvegica according to http://www.marinespecies.org ) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Serpula uncinata (subjective synonym of Hydroides dianthus according to Zibrowius, H. (1971) ) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Serpula vermicularis Linnaeus, 1767 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Serpulidae | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Siboglinidae | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Sigalion mathildae Audouin & Milne Edwards in Cuvier, 1830 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Sigalionidae Malmgren, 1867 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Sigambra Müller, 1858 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Sigambra parva (Day, 1963) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Simplaria Knight-Jones, 1984 | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Simplaria pseudomilitaris (Thiriot-Quievreux, 1965) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Siphonostoma plumosa Rathke, 1843 (objective synonym of Pherusa plumosa) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |
Solecolepis oxycephala Malm, 1874 (objective synonym of Aonides oxycephala) | Body size (max) Complex species Depth zonation (benthos) Depth zonation (pelagic) Developmental mechanism Egg size Factors triggering reproduction Fecundity Feeding type Fertilization type Age at first reproduction Habitat type Habitat type of settlement/ early development Intra- and interspecific competition Juvenile mobility Larval development Larval feeding type Larval mode of development Lifespan Location of parental care Tube/ burrow material Metamorphosis type Migrations of adult Mobility of adult Mode of reproduction Parental care/ Brood protection Pattern of oogenesis Population sex ratio Predated by Reproduction strategy of the individual Reproduction temperature Resorption of eggs Ecosystem engineering Substrate type of settlement Sexual metamorphosis Sociability Spawning frequency of the population Sperm type Survival salinity Survival temperature Epitoky Synchronization of spawning Tolerance (AMBI index) Typically feeds on Physiographic feature Substrate type Feeding structure Environmental position |